
BCS361: Computer Architecture

The Processor: Datapath and Control

2

Logic Blocks

• A logic block has a number of binary inputs and produces
a number of binary outputs

• A logic block is termed combinational if the output is only
a function of the inputs

• A logic block is termed sequential if the block has some
internal memory (state) that also influences the output

• A basic logic block is termed a gate (AND, OR, NOT, etc.)

3

Truth Table

• A truth table defines the outputs of a logic block for each
set of inputs

• Consider a block with 3 inputs A, B, C and an output E
that is true only if exactly 2 inputs are true

A B C E

4

Truth Table

• A truth table defines the outputs of a logic block for each
set of inputs

• Consider a block with 3 inputs A, B, C and an output E
that is true only if exactly 2 inputs are true

A B C E
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

5

Boolean Algebra

• Equations involving two values and three primary operators:

 OR : symbol + , X = A + B  X is true if at least one of
A or B is true

 AND : symbol . , X = A . B  X is true if both A and B
are true

 NOT : symbol
X = A  X is the inverted value of A

6

Boolean Algebra Rules

• Identity law : A + 0 = A ; A . 1 = A

• Zero and One laws : A + 1 = 1 ; A . 0 = 0

• Inverse laws : A . A = 0 ; A + A = 1

• Commutative laws : A + B = B + A ; A . B = B . A

• Associative laws : A + (B + C) = (A + B) + C
A . (B . C) = (A . B) . C

• Distributive laws : A . (B + C) = (A . B) + (A . C)
A + (B . C) = (A + B) . (A + C)

7

DeMorgan’s Laws

• A + B = A . B

• A . B = A + B

8

Pictorial Representations

AND OR NOT

What logic function is this?

9

Boolean Equation

• Consider the logic block that has an output E that is true
only if exactly two of the three inputs A, B, C are true

10

Boolean Equation

• Consider the logic block that has an output E that is true
only if exactly two of the three inputs A, B, C are true

Multiple correct equations:

Two must be true, but all three cannot be true:
E = ((A . B) + (B . C) + (A . C)) . (A . B . C)

Identify the three cases where it is true:
E = (A . B . C) + (A . C . B) + (C . B . A)

11

Sum of Products

• Can represent any logic block with the AND, OR, NOT operators
 Draw the truth table
 For each true output, represent the corresponding inputs

as a product
 The final equation is a sum of these products

A B C E
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

(A . B . C) + (A . C . B) + (C . B . A)

• Can also use “product of sums”
• Any equation can be implemented
with an array of ANDs, followed by
an array of ORs

12

NAND and NOR

• NAND : NOT of AND : A nand B = A . B

• NOR : NOT of OR : A nor B = A + B

• NAND and NOR are universal gates, i.e., they can be
used to construct any complex logical function

13

Common Logic Blocks – Decoder

Takes in N inputs and activates one of 2N outputs

I0 I1 I2 O0 O1 O2 O3 O4 O5 O6 O7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

3-to-8
Decoder

I0-2 O0-7

14

Common Logic Blocks – Multiplexor

• Multiplexor or selector: one of N inputs is reflected on the
output depending on the value of the log2N selector bits

2-input mux

15

Adder Algorithm

1 0 0 1
0 1 0 1

Sum 1 1 1 0
Carry 0 0 0 1

A B Cin Sum Cout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Truth Table for the above operations:

16

Adder Algorithm

1 0 0 1
0 1 0 1

Sum 1 1 1 0
Carry 0 0 0 1

A B Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Truth Table for the above operations:

Equations:
Sum = Cin . A . B +

B . Cin . A +
A . Cin . B +
A . B . Cin

Cout = A . B . Cin +
A . B . Cin +
A . Cin . B +
B . Cin . A

= A . B +
A . Cin +
B . Cin

17

Carry Out Logic

Equations:
CarryOut = A . B + A . Cin + B . Cin

The Sum Logic

19

1-Bit ALU with Add, Or, And

• Multiplexor selects between Add, Or, And operations

20

32-bit Ripple Carry Adder

1-bit ALUs are connected
“in series” with the
carry-out of 1 box
going into the carry-in
of the next box

21

Incorporating Subtraction

22

Incorporating Subtraction

Must invert bits of B and add a 1
• Include an inverter
• CarryIn for the first bit is 1

23

Incorporating NOR

24

Incorporating NOR

25

Incorporating slt

26

Incorporating slt

• Perform a – b and check
the sign

• The 31st box has a unit
to detect overflow and
sign

• If 31st bit is 1, then
a – b < 0; Set is true and is
fed to Less in bit 0.

• For all bits other than
bit 0, Less must be 0.

0
1

0
1

+

Ainvert Binvert
CarryIn Operation

0
1

0
1

0

1

2

3

+

0
1

0
1

+

0

1

2

3

0

1

2

3

0
1

0
1

+

0

1

2

3

a0

b0

less

less

less

less

a3

b3

b2

a2

b1

a1

set

•Perform a – b and check
the sign

• The 31st box has a unit
to detect overflow and
sign

• If 31st bit is 1, then
a – b < 0; Set is true and is fed to

Less in bit 0.

• For all bits other than
bit 0, Less must be 0.

Incorporating slt

28

Incorporating beq

• Perform a – b and
confirm that the
result is all zero’s

29

Control Lines

What are the values
of the control lines

and what operations
do they correspond to?

30

Control Lines

What are the values
of the control lines

and what operations
do they correspond to?

Ai Bn Op
AND 0 0 00
OR 0 0 01
Add 0 0 10
Sub 0 1 10
SLT 0 1 11
NOR 1 1 00

31

Basic MIPS Architecture

• We’ll design a simple CPU that executes:

 basic math (add, sub, and, or, slt)
memory access (lw and sw)
 branch and jump instructions (beq and j)

32

Implementation Overview

• We need memory
 to store instructions
 to store data
 for now, let’s make them separate units

• We need registers, ALU, and a whole lot of control logic

• CPU operations common to all instructions:
 use the program counter (PC) to pull instruction out

of instruction memory
 read register values

33

Datapath

• Datapath Element: A functional unit used to operate or hold
data within the processor. Examples in MIPS implementation are
memory, register file, ALU and adders.

• Datapath: Collection of all datapath elements

34

View from 30,000 Feet

36

Implementing R-type Instructions

• Instructions of the form add $t1, $t2, $t3

37

Implementing Loads/Stores

• Instructions of the form lw $t1, 8($t2) and sw $t1, 8($t2)

Where does this input come from?

38

Implementing J-type Instructions

• Instructions of the form beq $t1, $t2, offset

39

View from 10,000 Feet

40

View from 5,000 Feet

41

Reviewing the R Type and I Type Format

R-type instruction add $t0, $s1, $s2
000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
op rs rt rd shamt funct

opcode source source dest shift amt function

I-type instruction lw $t0, 32($s3)
6 bits 5 bits 5 bits 16 bits

opcode rs rd constant

42

Clock Terminology

Cycle time

Rising clock edge

Falling clock edge

4 GHz = clock speed = 1 = 1 .
cycle time 250 ps

43

Sequential Circuits

• Until now, circuits were combinational – when inputs change, the
outputs change after a while (time = logic delay through circuit)

Combinational
Circuit

Inputs Outputs

• We want the clock to act like a start and stop signal – a “latch” is
a storage device that stores its inputs at a rising clock edge and
this storage will not change until the next rising clock edge

Combinational
Circuit

Outputs

Combinational
Circuit

Combinational
Circuit

Latch Latch

Inputs

Clock Clock

44

Sequential Circuits

• Sequential circuit: consists of combinational circuit and a storage element

• At the start of the clock cycle, the rising edge causes the “state” storage
to store some input values

• This state will not change for an entire cycle (until next rising edge)

• The combinational circuit has some time to accept the value
of “state” and “inputs” and produce “outputs”

• Some of the outputs (for example, the value of next “state”) may feed
back (but through the latch so they’re only seen in the next cycle).

45

View from 5,000 Feet

46

Example: MIPS Clock Rate

 Determine the clock rate for the MIPS
architecture, assuming the following:

 The MIPS is a Single Cycle Machine

 1 clock cycle per instruction

 CPI = 1

 Access time for memory units = 200 ps

 Operation time for ALU and adders = 100 ps

 Access time for register file = 50 ps

47

Example: MIPS Clock Rate

Instruction Class Functional Units used by the Instruction Class

ALU Instruction Inst. Fetch Register ALU Register

Load Word Inst. Fetch Register ALU Memory Register

Store Word Inst. Fetch Register ALU Memory

Branch Inst. Fetch Register ALU

Jump Inst. Fetch

48

Example: MIPS Clock Rate

Instruction Class Instr

Memory

Register

read

ALU

operation

Data

Memory

Register

write

Total

ALU Instruction 200 50 100 0 50 400 ps

Load Word 200 50 100 200 50 600 ps

Store Word 200 50 100 200 0 550 ps

Branch 200 50 100 0 0 350 ps

Jump 200 0 0 0 0 200 ps

49

Example: MIPS Clock Rate

 The clock cycle time for a machine with a
single clock cycle per instruction will be
determined by the longest instruction.

 In this example, the load word instruction
requires 600 ps.

 The clock rate is then
Clock rate = 1 / Clock Cycle Time

Clock rate = 1 / 600 ps = 1.67 GHz

50

Performance Issues

 Longest delay determines clock period

 Critical path: load word (lw) instruction

 Instruction memory  register file  ALU  data
memory  register file

 Improve performance by pipelining

1. How can we design future multi and many-core architectures to have better
performance, spend less power and be easier to program—all at a lower cost?

2. How do we restructure the memory hierarchy to meet the demands of “big
data” applications such as dynamically changing graphs, machine intelligence,
and search?

3. What should be the architectures of future GPUs?
4. How do we help programmers efficiently create and debug their software for

parallel architectures?
5. How to utilize characteristics of the emerging applications to specialize current

and design next generation computing systems?
6. How do we quickly simulate future computer architectures with current

computers?
7. What are the advantages and disadvantages of having a large number of pipeline

stages in a processor? What is the future of Instruction Level Parallelism?
8. What is the support provided for Thread Level Parallelism in current

architectures? What is the future of Thread Level Parallelism
9. What are the different Single Instruction Multiple Data (SIMD) architectures

available

• Cloud:

– Running Scientific High Performance Computing
Applications on the Cloud

• University of Cambridge:

1. Languages and Compilers for multi-core
architectures

2. Flexible support for speculation, synchronization
and coherency

3. Fine-grain parallel communication-centric
architectures

4. Techniques for improving Cache utilization

Princeton: The Liberty Research Group

• The Parallelization Project

• The Fault Tolerance Project

• The Compiler Foundations Project

• The Security Project

